Analysis of the palladium-catalyzed (aromatic)C-H bond metalation-deprotonation mechanism spanning the entire spectrum of arenes.

نویسندگان

  • Serge I Gorelsky
  • David Lapointe
  • Keith Fagnou
چکیده

A comprehensive understanding of the C-H bond cleavage step by the concerted metalation-deprotonation (CMD) pathway is important in further development of cross-coupling reactions using different catalysts. Distortion-interaction analysis of the C-H bond cleavage over a wide range of (hetero)aromatics has been performed in an attempt to quantify the various contributions to the CMD transition state (TS). The (hetero)aromatics evaluated were divided in different categories to allow an easier understanding of their reactivity and to quantify activation characteristics of different arene substituents. The CMD pathway to the C-H bond cleavage for different classes of arenes is also presented, including the formation of pre-CMD intermediates and the analysis of bonding interactions in TS structures. The effects of remote C2 substituents on the reactivity of thiophenes were evaluated computationally and were corroborated experimentally with competition studies. We show that nucleophilicity of thiophenes, evaluated by Hammett σ(p) parameters, correlates with each of the distortion-interaction parameters. In the final part of this manuscript, we set the initial equations that can assist in the development of predictive guidelines for the functionalization of C-H bonds catalyzed by transition metal catalysts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The mechanism of the Pd-catalyzed formation of coumarins: a theoretical study.

The mechanism of the formation of coumarins via the Pd-catalyzed intramolecular hydroarylation of the C-C triple bond is elucidated computationally, in corroboration with experimental data. It is shown that the reaction follows the concerted metalation-deprotonation (CMD) mechanism. The typically suspected mechanisms of ambiphilic metal ligand activation (AMLA), electrophilic aromatic substitut...

متن کامل

Autocatalytic intermolecular versus intramolecular deprotonation in C-H bond activation of functionalized arenes by ruthenium(II) or palladium(II) complexes.

The activation of the C-H bond of 1-phenylpyrazole (2) and 2-phenyl-2-oxazoline (3) by [Ru(OAc)2(p-cymene)] is an autocatalytic process catalyzed by the co-product HOAc. The reactions are indeed faster in the presence of acetic acid and water but slower in the presence of a base K2CO3. A reactivity order is established in the absence of additives: 2-phenylpyridine>2-phenyl-2-oxazoline>1-phenylp...

متن کامل

One-pot borylation/amination reactions: syntheses of arylamine boronate esters from halogenated arenes.

[reaction: see text] A one-pot protocol for converting 1,3- and 1,4-substituted aryl halides to arylamine boronate esters is described. This is achieved by sequential Ir-catalyzed aromatic borylation at the least hindered C-H bond of the aryl halide and subsequent Pd-catalyzed C-N coupling at the halide position of the crude arylboronic ester.

متن کامل

Mechanistic analysis of azine N-oxide direct arylation: evidence for a critical role of acetate in the Pd(OAc)2 precatalyst.

Detailed mechanistic studies on the palladium-catalyzed direct arylation of pyridine N-oxides are presented. The order of each reaction component is determined to provide a general mechanistic picture. The C-H bond cleaving step is examined in further detail through computational studies, and the calculated results are in support of an inner-sphere concerted metalation-deprotonation (CMD) pathw...

متن کامل

Palladium-catalyzed decarboxylative coupling of aromatic acids with aryl halides or unactivated arenes using microwave heating.

Microwave heating greatly accelerates Pd-catalyzed decarboxylative coupling of aromatic acids and aryl iodides, and allows the coupling of benzoic acids with unactivated arenes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of organic chemistry

دوره 77 1  شماره 

صفحات  -

تاریخ انتشار 2012